
octomachinery Documentation
Release 0.3.7

Sviatoslav Sydorenko (@webknjaz)

Jun 17, 2023

CONTENTS:

1 Elevator pitch 3

2 Prerequisites 5

3 Contribute octomachinery 7

4 License 9

5 For Enterprise 11
5.1 Getting started . 11
5.2 How-to guides . 11

6 Indices and tables 15

i

ii

octomachinery Documentation, Release 0.3.7

How-to create a GitHub Bot tutorial is ready for preview @ tutorial.octomachinery.dev

CONTENTS: 1

https://github.com/vshymanskyy/StandWithUkraine/blob/main/docs/README.md
https://pypi.org/project/octomachinery
https://tidelift.com/subscription/pkg/pypi-octomachinery?utm_source=pypi-octomachinery&utm_medium=readme
https://github.com/sanitizers/octomachinery/actions?workflow=Build%2FTest%2FPublish
https://tutorial.octomachinery.dev/en/latest/

octomachinery Documentation, Release 0.3.7

2 CONTENTS:

CHAPTER

ONE

ELEVATOR PITCH

Here’s how you a just-created comment:

from octomachinery.app.server.runner import run as run_app
from octomachinery.routing import process_event_actions
from octomachinery.routing.decorators import process_webhook_payload
from octomachinery.runtime.context import RUNTIME_CONTEXT

@process_event_actions('issue_comment', {'created'})
@process_webhook_payload
async def on_comment(

*,
action, issue, comment,
repository=None, sender=None,
installation=None,
assignee=None, changes=None,

):
github_api = RUNTIME_CONTEXT.app_installation_client
comment_reactions_api_url = f'{comment["url"]}/reactions'
await github_api.post(

comment_reactions_api_url,
preview_api_version='squirrel-girl',
data={'content': '+1'},

)

run_app(
name='Thumbs-Up-Bot',
version='1.0.0',
url='https://github.com/apps/thuuuuuuuuuuuuuumbs-uuuuuuuuuuuup',

)

3

octomachinery Documentation, Release 0.3.7

4 Chapter 1. Elevator pitch

CHAPTER

TWO

PREREQUISITES

Python 3.7+

5

octomachinery Documentation, Release 0.3.7

6 Chapter 2. Prerequisites

CHAPTER

THREE

CONTRIBUTE OCTOMACHINERY

Want to add something to upstream? Feel free to submit a PR or file an issue if unsure. Note that PR is more likely
to be accepted if it includes tests and detailed description helping maintainers to understand it better

Oh, and be pythonic, please

Don’t know how? Check out How to Contribute to Open Source article by GitHub

7

https://opensource.guide/how-to-contribute/

octomachinery Documentation, Release 0.3.7

8 Chapter 3. Contribute octomachinery

CHAPTER

FOUR

LICENSE

The source code and the documentation in this project are released under the GPL v3 license.

9

https://github.com/sanitizers/octomachinery/blob/master/LICENSE

octomachinery Documentation, Release 0.3.7

10 Chapter 4. License

CHAPTER

FIVE

FOR ENTERPRISE

octomachinery is available as part of the Tidelift Subscription.

The octomachinery maintainers and the maintainers of thousands of other packages are working with Tidelift to deliver
one enterprise subscription that covers all of the open source you use.

Learn more.

5.1 Getting started

The documentation isn’t ready yet so I suggest you going through the How-to create a GitHub Bot tutorial which should
give you basic understanding of GitHub Apps and how to write them with octomachinery.

5.1.1 Runtime pre-requisites

• Python 3.7+ as octomachinery relies on contextvars which doesn’t have a backport.

• GitHub App credentials and GitHub Action events are supplied via environment variables. They are also loaded
from a .env file if it exists in a development environment.

Warning: Be aware that some tools in your environment may conflict with autoloading vars from a .env
file. It is recommended to disable those. One example of such tool is Pipenv.

For the production deployments, please use a way of supplying env vars via tools provided by the application
orchestration software of your choice.

5.2 How-to guides

5.2.1 Running a one-off task against GitHub API

Sometimes you need to run a series of queries against GitHub API. To do this, initialize a token (it’s taken from the
GITHUB_TOKEN env var in the example below), constuct a GitHub API wrapper and you are good to go.

RawGitHubAPI is a wrapper around interface provided by GitHubAPI, you can find the usage interface on its docu-
mentation page. Don’t forget to specify a user_agent string — it’s mandatory!

API calls return native Python dict or iterable objects.

11

https://tidelift.com/subscription/pkg/pypi-octomachinery?utm_source=pypi-octomachinery&utm_medium=referral&utm_campaign=github
https://docs.python.org/3/library/contextvars.html#module-contextvars
https://pipenv.readthedocs.io/en/latest/advanced/#automatic-loading-of-env
https://gidgethub.readthedocs.io/en/latest/abc.html#gidgethub.abc.GitHubAPI
https://docs.python.org/3/library/stdtypes.html#dict

octomachinery Documentation, Release 0.3.7

import asyncio
import os

from octomachinery.github.api.tokens import GitHubOAuthToken
from octomachinery.github.api.raw_client import RawGitHubAPI

async def main():
access_token = GitHubOAuthToken(os.environ["GITHUB_TOKEN"])
github_api = RawGitHubAPI(access_token, user_agent='webknjaz')
await github_api.post(

'/repos/mariatta/strange-relationship/issues',
data={

'title': 'We got a problem',
'body': 'Use more emoji!',

},
)

asyncio.run(main())

5.2.2 Authenticating as a bot (GitHub App)

To act as a bot, you should use a special kind of integration with GitHub — Apps. They are reusable entities in the
GitHub Platform available to be installed into multiple accounts and organizations.

Classic GitHub App requires a web-sever part to be deployed somewhere on the Internet in order to receive events
GitHub Platform would send there.

Yet, sometimes, you just want to act as a bot without any of that deployment hustle. You may want to have a [bot]
label next to comments you’ll post via API. You may want to manage rate limits better. This will allow you to run
one-off tasks like batch changes/migrations.

You’ll still need to register a GitHub App and install it into the target user account or organization. You’ll also have to
specify APIs you’d like to access using this App.

Then, you’ll need to get your App’s ID and a private key.

Now, first, specify the App ID, the key path and the target account. After that, create a
GitHubAppIntegrationConfig instance also specifying app name, version and some URL (these will be
used to generate a User-Agent HTTP header for API queries). Then, create a GitHubApp instance from that config.
Retrieve a list of places where the App is installed, filter out the target Installation and get an API client for it. Finally,
use RawGitHubAPI as usual.

import asyncio
import pathlib

from aiohttp.client import ClientSession

from octomachinery.github.api.app_client import GitHubApp
from octomachinery.github.config.app import GitHubAppIntegrationConfig

target_github_account_or_org = 'webknjaz' # where the app is installed to
(continues on next page)

12 Chapter 5. For Enterprise

octomachinery Documentation, Release 0.3.7

(continued from previous page)

github_app_id = 12345
github_app_private_key_path = pathlib.Path(

'~/Downloads/star-wars.2011-05-04.private-key.pem',
).expanduser().resolve()

github_app_config = GitHubAppIntegrationConfig(
app_id=github_app_id,
private_key=github_app_private_key_path.read_text(),

app_name='MyGitHubClient',
app_version='1.0',
app_url='https://awesome-app.dev',

)

async def get_github_client(github_app, account):
github_app_installations = await github_app.get_installations()
target_github_app_installation = next(# find the one

(
i for n, i in github_app_installations.items()
if i._metadata.account['login'] == account

),
None,

)
return target_github_app_installation.api_client

async def main():
async with ClientSession() as http_session:

github_app = GitHubApp(github_app_config, http_session)
github_api = await get_github_client(

github_app, target_github_account_or_org,
)
user = await github_api.getitem(

'/users/{account_name}',
url_vars={'account_name': target_github_account_or_org},

)
print(f'User found: {user["login"]}')
print(f'Rate limit stats: {github_api.rate_limit!s}')

asyncio.run(main())

5.2. How-to guides 13

octomachinery Documentation, Release 0.3.7

5.2.3 Making API queries against preview endpoints

Endpoints with stable interfaces in GitHub API are easy to hit. But some are marked as preview API. For those, GitHub
requires special Accept headers to be passed along with a normal HTTP request. The exact strings are documented at
https://developers.github.com under specific endpoint sections in their description.

Given that you’ve already got an instance of RawGitHubAPI initialized, what’s left is to pass preview_api_version
argument with the appropriate preview API code name when making query to the API endpoint requiring that.

github_api: RawGitHubAPI

repo_slug = 'sanitizers/octomachinery'
issue_number = 15

await github_api.post(
f'/repos/{repo_slug}/issues/{issue_number}/reactions',
preview_api_version='squirrel-girl',
data={'content': 'heart'},

)

14 Chapter 5. For Enterprise

https://developers.github.com

CHAPTER

SIX

INDICES AND TABLES

• genindex

• modindex

• search

15

	Elevator pitch
	Prerequisites
	Contribute octomachinery
	License
	For Enterprise
	Getting started
	Runtime pre-requisites

	How-to guides
	Running a one-off task against GitHub API
	Authenticating as a bot (GitHub App)
	Making API queries against preview endpoints

	Indices and tables

